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Abstract

Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer
types if it can be diagnosed early. Research efforts have reported with increasing confirmation that the support vector machines (SVM)
have greater accurate diagnosis ability. In this paper, breast cancer diagnosis based on a SVM-based method combined with feature
selection has been proposed. Experiments have been conducted on different training-test partitions of the Wisconsin breast cancer dataset
(WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The performance
of the method is evaluated using classification accuracy, sensitivity, specificity, positive and negative predictive values, receiver operating
characteristic (ROC) curves and confusion matrix. The results show that the highest classification accuracy (99.51%) is obtained for the
SVM model that contains five features, and this is very promising compared to the previously reported results.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Cancer is a group of diseases in which cells in the body
grow, change, and multiply out of control. Usually, cancer
is named after the body part in which it originated; thus,
breast cancer refers to the erratic growth of cells that orig-
inate in the breast tissue. A group of rapidly dividing cells
may form a lump or mass of extra tissue. These masses are
called tumors. Tumors can either be cancerous (malignant)
or non-cancerous (benign). Malignant tumors penetrate
and destroy healthy body tissues.

The term, breast cancer, refers to a malignant tumor
that has developed from cells in the breast. Breast cancer
is the leading cause of death among women between 40
and 55 years of age and is the second overall cause of death
among women (exceeded only by lung cancer) (http://
www.imaginis.com/breasthealth/breast_cancer.asp, Last
Accessed August 2007). According to the World Health
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Organization, more than 1.2 million women will be diag-
nosed with breast cancer each year worldwide. Fortu-
nately, the mortality rate from breast cancer has
decreased in recent years with an increased emphasis on
diagnostic techniques and more effective treatments. A
key factor in this trend is the early detection and accurate
diagnosis of this disease (West, Mangiameli, Rampal, &
West, 2005).

The use of classifier systems in medical diagnosis is
increasing gradually. There is no doubt that evaluation of
data taken from patients and decisions of experts are the
most important factors in diagnosis. However, expert sys-
tems and different artificial intelligence techniques for clas-
sification also help experts in a great deal. Classification
systems can help minimizing possible errors that can be
done because of inexperienced experts, and also provide
medical data to be examined in shorter time and more
detailed.

SVM have been proposed as an effective statistical learn-
ing method for classification (Vapnik, 1989). They rely on
so called support vectors (SV) to identify the decision
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boundaries between different classes. SVM are based on a
linear machine in a high dimensional feature space, non-
linearly related to the input space, which has allowed the
development of somewhat fast training techniques, even
with a large number of input variables and big training
sets. SVM have been used successfully for the solution of
many problems including handwritten digit recognition
(Scholkopf et al., 1997), object recognition (Pontil & Verri,
1998), speaker identification (Wan & Campbell, 2000), face
detection in images (Osuna, Freund, & Girosi, 1997), and
text categorization (Joachims, 1999).

When using SVM, three problems are confronted: how
to choose the kernel function and optimal input feature
subset for SVM, and how to set the best kernel parameters.
These problems are crucial because the feature subset
choice influences the appropriate kernel parameters and
vice versa (Frohlich et al., 2003). Feature selection is an
important issue in building classification systems. It is
advantageous to limit the number of input features in a
classifier to in order to have a good predictive and less com-
putationally intensive model (Zhang, 2000). With a small
feature set, the explanation of rationale for the classifica-
tion decision can be more readily realized.

In this study, SVM with feature selection was used to
diagnose the breast cancer. WBCD taken from the Univer-
sity of California at Irvine (UCI) machine learning reposi-
tory was used for training and testing experiments (ftp://
ftp.ics.uci.edu/pub/machine-learning-databases/breast-can-
cer-wisconsin, Last Accessed August 2007). It was observed
that the proposed method yielded the highest classification
accuracies (98.53%, 99.02%, and 99.51% for 50–50% of
training-test partition, 70–30% of training-test partition,
and 80–20% of training-test partition, respectively) for a
subset that contained five features. Also, other measures
such as the confusion matrix, sensitivity, specificity, posi-
tive predictive value, negative predictive value and ROC
curves were used to show the performance of SVM with
feature selection.

The rest of the paper is organized as follows. Section 2
summarizes the methods and results of previous research
on breast cancer diagnosis. Section 3 reviews basic SVM
concepts. Section 4 describes the proposed method. Section
5 presents experimental results from using the proposed
method to diagnose breast cancer. Finally, Section 6 con-
cludes the paper along with outlining future directions.

2. Related work on breast cancer diagnosis

There has been a lot of research on medical diagnosis of
breast cancer with WBCD in literature, and most of them
reported high classification accuracies. In Albrecht, Lap-
pas, Vinterbo, Wong, and Ohno-Machado (2002), a learn-
ing algorithm that combined logarithmic simulated
annealing with the perceptron algorithm was used and
the reported accuracy was 98.8%. In Pena-Reyes and Sip-
per (1999), the classification technique used fuzzy-GA
method reaching a classification accuracy of 97.36%. In
Setiono (2000), the classification was based on a feed for-
ward neural network rule extraction algorithm. The
reported accuracy was 98.10%. (Quinlan, 1996) reached
94.74% classification accuracy using 10-fold cross-valida-
tion with C4.5 decision tree method. (Hamiton, Shan, &
Cercone, 1996) obtained 94.99% accuracy with RIAC
method, while (Ster & Dobnikar, 1996) obtained 96.8%
with linear discreet analysis method. The accuracy
obtained by Nauck and Kruse (1999) was 95.06% with neu-
ron-fuzzy techniques. In Goodman, Boggess, and Watkins
(2002), three different methods, optimized learning vector
quantization (LVQ), big LVQ, and artificial immune recog-
nition system (AIRS), were applied and the obtained accu-
racies were 96.7%, 96.8%, and 97.2%, respectively. In
Abonyi and Szeifert (2003), an accuracy of 95.57% was
obtained with the application of supervised fuzzy clustering
technique. In Polat and Gunes (2007), least square SVM
was used and an accuracy of 98.53% was obtained.

3. Support vector machines

3.1. Linear SVM

Consider the problem of separating the set of training
vectors belonging to two linearly separable classes,

ðxi; yiÞ; xi 2 Rn; yi 2 fþ1;�1g; i ¼ 1; . . . ; n; ð1Þ

where xi is a real-valued n-dimensional input vector and yi

is a label that determines the class of xi. A separating
hyperplane is determined by an orthogonal vector w and
a bias b, which identifies the points that satisfy

w:xþ b ¼ 0: ð2Þ

The parameters w and b are constrained by

min
i
jw:xi þ bjP 1: ð3Þ

A separating hyperplane in canonical form must satisfy the
following constraints,

yiðw:xi þ bÞP 1; i ¼ 1; 2; . . . ; n: ð4Þ

The hyperplane that optimally separates the data is the one
that minimizes

UðwÞ ¼ 1

2
ðw:wÞ: ð5Þ

Relaxing the constraints of (4) by introducing slack vari-
ables ni P 0, i = 1,2, . . . ,n, (4) becomes

yi:ðw:xi þ bÞP 1� ni; i ¼ 1; 2; . . . ; n: ð6Þ
In this case, the optimization problem becomes

Uðw; nÞ ¼ 1

2
ðw:wÞ þ C

Xn

i¼1

ni ð7Þ

with a user defined positive finite constant C. The solution
to the optimization problem in (7), under the constraints of
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(6), could be obtained in the saddle point of Lagrangian
function

Lðw; b; a; n; cÞ ¼ 1

2
ðw:wÞ þ C

Xn

i¼1

ni �
Xn

i¼1

aijyiðw:xi þ bÞ � 1

þ nij �
Xn

i¼1

cini; ð8Þ

where ai P 0, ni P 0, i = 1,2, . . ., n are the Lagrange multi-
pliers. The Lagrangian function has to be minimized with
respect to w, b, and ni. Classical Lagrangian duality enables
the primal problem, (8), to be transformed into its dual
problem, which is easier to solve. The dual problem is given
by

max
a

Xn

i¼1

ai �
1

2

Xn

i;j¼1

aiajyiyjðxi:xjÞ
" #

ð9Þ

with constraints

Xn

i¼1

aiyi ¼ 0; 0 6 ai 6 C; i ¼ 1; 2; . . . ; n: ð10Þ

This is a classic quadratic optimization problem, for which
there exists a unique solution. According to the Kuhn–
Tucker theorem of optimization theory (Bertsekas, 1995),
the optimal solution satisfies

ai½yiðw:xi þ bÞ � 1� ¼ 0; i ¼ 1; 2; . . . ; n: ð11Þ

(11) has non-zero Lagrange multipliers if and only if the
points xi satisfy

yiðw:xi þ bÞ ¼ 1: ð12Þ

These points are termed SV. The hyperplane is determined
by the SV, which is a small subset of the training vectors.
Hence if a�i is the non-zero optimal solution, the classifier
function can be expressed as

f ðxÞ ¼ sgn
Xn

i¼1

a�i yiðxi:xÞ þ b�
( )

; ð13Þ

where b* is the solution of (11) for any non-zero a�i .

3.2. Non-linear SVM

When a linear boundary is inappropriate SVM can map
the input vector into a high dimensional feature space. By
defining a non-linear mapping, the SVM construct an opti-
mal separating hyperplane in this higher dimensional
space. Usually non-linear mapping is defined as

uð�Þ : Rn ! Rnh: ð14Þ

In this case, optimal function (9) becomes (15) with the
same constraints

max
a

Xn

i¼1

ai �
1

2

Xn

i;j¼1

aiajyiyjKðxi; xjÞ
" #

; ð15Þ
where

Kðxi; xjÞ ¼ fuðxiÞ:uðxjÞg ð16Þ

is the kernel function performing the non-linear mapping
into feature space. The kernel function may be any of the
symmetric functions that satisfy the Mercel conditions
(Courant & Hilbert, 1953). The most commonly used func-
tions are the Radial Basis Function (RBF)

Kðxi; xjÞ ¼ expf�c j xi � xjj2g ð17Þ

and the Polynomial Function

Kðxi; xjÞ ¼ ðxi:xj þ 1Þq; q ¼ 1; 2; . . . ; ð18Þ

where the parameters c and q in (17) and (18), respectively
must be preset.

4. Methodology and experiments

4.1. Breast cancer dataset

We have used WBCD taken from the UCI machine
learning repository in our experiments. This dataset is com-
monly used among researchers who use machine learning
methods for breast cancer classification, so it provides us
to compare the performance of our method with that of
others. The dataset contains 683 samples taken from needle
aspirates from human breast cancer tissue. It consists of
nine features, each of which is represented as an integer
between 1 and 10. The features are; clump thickness (F1),
uniformity of cell size (F2), uniformity of cell shape (F3),
marginal adhesion (F4), single epithelial cell size (F5), bare
nucleoi (F6), bland chromatin (F7), normal nuclei (F8), and
mitoses (F9). Four hundred and forty four samples of the
dataset belong to benign class, and the rest are of malig-
nant class.

4.2. Feature Selection

Feature selection is an important issue in building clas-
sification systems. It is advantageous to limit the number of
input features in a classifier in order to have a good predic-
tive and less computationally intensive model. In the area
of medical diagnosis, a small feature subset means lower
test and diagnostic costs. F-score (Chen & Lin, 2005) is a
simple technique which measures the discrimination of
two sets of real numbers. Given training vectors xk,
k = 1,2, . . . ,m, if the number of positive and negative
instances are n+ and n�, respectively, then the F-score of
the ith feature is defined as

F i ¼
ð�xðþÞi � �xiÞ2 þ ð�xð�Þi � �xiÞ2

1
nþ�1

Pnþ
k¼1

ðxðþÞk;i � �xðþÞi Þ
2 þ 1

n��1

Pn�
k¼1

ðxð�Þk;i � �xð�Þi Þ
2
; ð19Þ

where �xi;�x
ðþÞ
i ;�xð�Þi are the average of the ith feature of the

whole, positive, and negative datasets, respectively; xðþÞk;i is
the ith feature of the kth positive instance, and xð�Þk;i is the
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ith feature of the kth negative instance. The numerator
indicates the discrimination between the positive and nega-
tive sets, and the denominator indicates the one within each
of the two sets. The larger the F-score is, the more likely
this feature is more discriminative.

4.3. Setting model parameters

In addition to the feature subset selection, kernel selec-
tion and setting appropriate kernel parameters can greatly
improve the SVM classification accuracy. In this work, we
chose the RBF kernel defined by (17). The parameters that
should be optimized for the RBF kernel are the penalty
parameter C and the kernel function parameter c.

For median-sized problems, the grid search approach is
an efficient way to find the best C and c (Hsu, Chang, &
Lin, 2003). In grid search, pairs of (C, c) are tried and
the one with the best cross-validation accuracy is chosen.
To improve the generalization ability, grid search uses a
cross-validation process. That is, for each k subsets of the
dataset D, create a training set T = D � k, then run a
cross-validation (CV) process as follows:

1. Consider a grid space of (C,c) with log2 C 2 {�5,�4,
. . . , 15} and log2c 2 {�15,�11, . . . , 3}.

2. For each pair (C,c) in the search space, conduct k-fold
CV on the training set.

3. Choose the parameter (C,c) that leads to the highest
overall CV classification rate.

4. Use the best parameter to create a model for training the
dataset.
Fig. 1. SVM-based model using grid search to optimize model parameters
and F-score calculation to select input features.

Table 1
Confusion matrix representation

Actual Predicted

Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
4.4. SVM model with grid search and feature selection

Fig. 1 shows the block diagram of our SVM-based
model using grid search to find the optimized model
parameters and F-score calculation to select input features.
Initially, the F-score of each feature in the training set is
calculated and these scores are sorted in descending order.
In the second phase, a subset of the original training set is
generated by including the features with top N F-scores,
where N = 1,2, . . . ,m and m is the total number of features.
Once the subset is generated, a grid search using 10-fold
CV is carried out in the third phase to find the optimized
values of (C,c). In the fourth stage, the subset is trained
with the values of (C,c) found in the previous stage and
the SVM predictor model is obtained. In the last stage, this
model is used to predict labels in the test subset. This pro-
cedure is carried out until all the features appear in the sub-
set according to their F-scores.

4.5. Measures for performance evaluation

We have used several measures in order to evaluate the
effectiveness of our method. These measures are classifica-
tion accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, ROC curves and confu-
sion matrix. A confusion matrix (Kohavi & Provost,
1998) contains information about actual and predicted
classifications done by a classification system. Table 1
shows the confusion matrix for a two class classifier. Clas-
sification accuracy, sensitivity, specificity, positive predic-
tive value and negative predictive value can be defined by
using the elements of the confusion matrix as



Table 4
Classification accuracies for each model and different test subsets

Model Classification accuracy (%)

50–50% training-
test partition

70–30% training-
test partition

80–20% training-
test partition

#1 92.10 91.21 91.21
#2 97.36 96.09 97.56
#3 97.95 98.04 97.56
#4 98.24 98.04 99.51
#5 98.53 99.02 99.51
#6 98.24 98.53 99.02
#7 98.24 98.53 98.53
#8 97.95 98.53 98.53
#9 98.24 98.53 99.02

Table 5
Classification accuracies obtained with our method and other classifiers
from literature

Author (year) Method Classification
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Classification accuracy ð%Þ ¼ TPþ TN

TPþ FPþ FNþ TN
; ð20Þ

Sensitivity ð%Þ ¼ TP

TPþ FN
� 100; ð21Þ

Specificity ð%Þ ¼ TN

FPþ TN
� 100; ð22Þ

Positive predictive value ¼ TP

TPþ FP
� 100; ð23Þ

Negative predictive value ¼ TN

FNþ TN
� 100: ð24Þ

ROC curves is a reliable technique based on the values of
true positives and false positives, and therefore, provides
a trade-off between sensitivity and specificity.

5. Results and discussion

To evaluate the effectiveness our method, we conducted
experiments on the WBCD. The importance of each fea-
ture is measured by F-score, and the SVM parameters are
optimized by grid search. Table 2 shows the relative impor-
tance with F-score for each feature on different training
sets. The degree of breast tumor associated with features,
from high to low, are F6, F3, F2, F1, F7, F8, F5, F4, and
F9. Therefore, we construct nine models with a different
number of features to obtain the SVM classification mod-
els. Table 3 shows the nine models with different feature
subsets based on F-score.

Table 4 shows the classification accuracies on the testing
data for the nine models. Among the nine models, model
#5 achieved the highest classification accuracy; 98.53%
Table 2
The relative feature importance with F-score

Feature
no.

50–50% training-
test partition

70–30% training-
test partition

80–20% training-
test partition

1 1.001444 1.133288 1.167029
2 1.328275 1.607558 1.786705
3 1.836976 1.826187 1.995388
4 1.798894 0.814200 0.866999
5 0.861221 0.834406 0.885195
6 1.990531 2.094498 2.192387
7 0.916463 1.066493 1.102302
8 0.897005 1.009641 1.054659
9 0.259275 0.277578 0.252970

Table 3
The nine feature subsets based on F-score

Model No. of selected features Features

#1 1 F6

#2 2 F6, F3

#3 3 F6, F3, F2

#4 4 F6, F3, F2, F1

#5 5 F6, F3, F2, F1, F7

#6 6 F6, F3, F2, F1, F7, F8

#7 7 F6, F3, F2, F1, F7, F8, F5

#8 8 F6, F3, F2, F1, F7, F8, F5, F4

#9 9 F6, F3, F2, F1, F7, F8, F5, F4, F9
for the 50–50% training-test partition, 99.02% for the 70–
30% training-test partition, and 99.51% for the 80–20%
training-test partition. For comparison purposes, Table 5
gives the classification accuracies of our method and previ-
ous methods. As we can see from the results, our method
using F-score and SVM obtains the highest classification
accuracy so far.

We present values of sensitivity, specificity, positive pre-
dictive value and negative predictive value for model #5 in
Table 6. The ROC curves for model #5 are also presented
(Figs. 2–4). The areas under the ROC curves is computed,
accuracy (%)

Quinlan (1996) C4.5 94.74
Hamiton et al. (1996) RIAC 95.00
Ster and Dobnikar (1996) LDA 96.80
Nauck and Kruse (1999) NEFCLASS 95.06
Pena-Reyes and Sipper

(1999)
Fuzzy-GA1 97.36

Setiono (2000) Neuro-rule 2a 98.10
Goodman et al. (2002) Optimized-LVQ 96.70
Goodman et al. (2002) Big LVQ 96.80
Goodman et al. (2002) AIRS 97.20
Albrecht et al. (2002) LSA with perceptron

algorithm
98.80

Abonyi and Szeifert (2003) Supervised fuzzy clustering 95.57
Polat and Gunes (2007) LS-SVM 98.53
This study (2007) F-score + SVM 99.51

Table 6
Sensitivity, specificity, positive predictive value and negative predictive
value for model #5

Measures 50–50%
training-test
partition

70–30%
training-test
partition

80–20%
training-test
partition

Sensitivity (%) 99.55 99.24 100
Specificity (%) 96.64 98.61 97.91
Positive predictive value (%) 98.22 99.24 98.88
Negative predictive value (%) 99.14 98.61 100



Fig. 2. ROC curve for 50–50% training-test partition.

Fig. 3. ROC curve for 70–30% training-test partition.
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and these values can be used for evaluating the classifier
performance for different training/test partitions. The big-
ger area means better classifier performance.

In this study, there were two classes as benign and
malignant. Classification results are displayed using a con-
fusion matrix in Table 7. As we can see from Table 7, num-
ber of false positives and false negatives decrease with the
increase of the training set size.

From the results above, we conclude that SVM with fea-
ture selection using F-score obtains promising results in
classifying the potential breast cancer patients.
6. Conclusions

A medical decision making system based on SVM com-
bined with feature selection has been applied on the task of
diagnosing breast cancer. Experiments have been con-
ducted on different portions of the WBCD, which is
commonly used among researchers who use machine learn-
ing methods to diagnose breast cancer. It is observed
that the proposed method yields the highest classification
accuracies (98.53%, 99.02%, and 99.51% for 50–50% of
training-test partition, 70–30% of training-test partition,



Fig. 4. ROC curve for 80–20% training-test partition.

Table 7
Confusion matrixes for model #5

Actual Predicted Partitions

Benign Malignant

Benign 221 1 50–50% training-test partition
Malignant 4 115

Benign 132 1 70–30% training-test partition
Malignant 1 71

Benign 89 0 80–20% training-test partition
Malignant 1 47
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and 80–20% of training-test partition, respectively) for a
subset that contained five features (model #5). Additional
performance measures such as sensitivity, specificity, posi-
tive predictive value, negative predictive value, ROC curves
and confusion matrices are also presented for model #5.
Considering the results, the SVM-based model we have
developed gives very promising results in classifying the
breast cancer. We believe that the proposed system can
be very helpful to the physicians for their final decisions
on their patients. By using such a tool, they can make very
accurate decisions.

Further exploration of the data can yield more interest-
ing results. This will be the focus of our future work.
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